Active and reactive effort in sign language phonetics

Nathan Sanders and Donna Jo Napoli

Swarthmore College

February 25th, 2015
Tri-Co Linguistics Lecture Series
Swarthmore College
Roadmap of the talk

1. Articulatory effort
2. Sign language phonetics
3. Active effort
4. Reactive effort
5. Summary
Articulatory effort
Background

Long tradition of functional work recognizing the importance of reducing articulatory effort in (spoken) language:

Kirchner 1998, 2004: Sum of all articulatory forces involved throughout the duration of the articulation, both those which result in movement and those which isometrically hold an articulator in place.

\[
\text{total articulatory effort} = \int_{t_i}^{t_f} |F(t)| \, dt
\]
Strategies for effort reduction

- reduce number of moving articulators
- reduce distance moved
- reduce mass moved
- reduce isometric (stabilizing) forces
- and probably others

Nathan Sanders and Donna Jo Napoli
Active and reactive effort in sign language phonetics
Effort reduction in spoken languages

- reduce number of moving articulators:
 e.g. simplification of labiovelars to velars
Effort reduction in spoken languages

- reduce number of moving articulators: e.g. simplification of labiovelars to velars
- reduce distance moved: e.g. place assimilation
Effort reduction in spoken languages

- reduce number of moving articulators: e.g. simplification of labiovelars to velars
- reduce distance moved: e.g. place assimilation
- reduce mass moved: e.g. shift of palatals to coronals
Effect reduction in spoken languages

- reduce number of moving articulators: e.g. simplification of labiovelars to velars
- reduce distance moved: e.g. place assimilation
- reduce mass moved: e.g. shift of palatals to coronals
- reduce isometric (stabilizing) forces: Kirchner’s explanation for why lenition results in non-strident, rather than strident, continuants
Effort reduction in sign languages

- reduce number of moving articulators:
 e.g. simplification of two-handed signs to one-handed (ASL COW used to be two-handed)
Effort reduction in sign languages

- reduce number of moving articulators:
 e.g. simplification of two-handed signs to one-handed (ASL COW used to be two-handed)

- **reduce distance moved:** e.g. location undershoot (ASL KNOW is sometimes articulated under the eye)
Effort reduction in sign languages

- reduce number of moving articulators: e.g. simplification of two-handed signs to one-handed (ASL COW used to be two-handed)
- reduce distance moved: e.g. location undershoot (ASL KNOW is sometimes articulated under the eye)
- reduce mass moved: stay tuned!
- reduce isometric (stabilizing) forces: stay tuned!
Sign language phonetics
“Sign language phonetics”?

- *phonetics* < Greek ϕωνή (phōnē) ‘sound’
“Sign language phonetics”? • *phonetics* < Greek φωνή (*phōnē*) ‘sound’ • *language* < Latin *lingua* ‘tongue’
“Sign language phonetics”?

- \textit{phonetics} \textless{} Greek \text phi\textomega\nu\texteta (\textphi\texttheta\textomicron\textnu\textacute\textepsilon) ‘sound’

- \textit{language} \textleft{} Latin \textit{lingua} ‘tongue’

but despite etymology, \textit{language} refers to any language, regardless of its modality (i.e. both sign and spoken)
Etymology is not meaning

“Sign language phonetics”?
- *phonetics* ← Greek φωνή (phōnē) ‘sound’
- *language* ← Latin lingua ‘tongue’

- but despite etymology, *language* refers to any language, regardless of its modality (i.e. both sign and spoken)

- similarly, despite etymology, *phonetics* refers to (the study of) the physical properties of any language, regardless of its modality
Sign language articulators

manual
arms, hands, fingers, thumbs

nonmanual
eyebrows, nostrils, lips, tongue, head, torso
Manual joints

- Shoulder
- Elbow
- Radioulnar
- Wrist
- Base
- Interphalangeal
Manual movement

path

movement at the shoulder or elbow (e.g. ASL STAY and SAME)

local

movement at the radioulnar, wrist, base, or interphalangeal (e.g. ASL YES and YELLOW)
Active effort
Active effort: The effort used to move or stabilize an articulator itself. This is the usual understanding of articulatory effort. For manual movement in a sign language, this would be the effort needed to move the manual articulator, by engaging the biceps, triceps, etc.
Joint proximity and active effort

<table>
<thead>
<tr>
<th>shoulder</th>
<th>elbow</th>
<th>radioulnar</th>
<th>wrist</th>
<th>base</th>
<th>interphalangeal</th>
<th>proximal</th>
<th>distal</th>
</tr>
</thead>
<tbody>
<tr>
<td>most</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>proximal</td>
<td>distal</td>
</tr>
</tbody>
</table>
Joint proximity and active effort

shoulder elbow radioulnar wrist base interphalangeal
most proximal
most mass

The more proximal a joint is (i.e. the closer to the torso), the more mass it moves. Therefore, distance from the torso inversely correlates to active effort.
Joint proximity and active effort

shoulder elbow radioulnar wrist base interphalangeal
most proximal
most mass
most effort

The more proximal a joint is (i.e., the closer to the torso), the more mass it moves. Therefore, distance from the torso inversely correlates to active effort.
Joint proximity and active effort

shoulder elbow radioulnar wrist base interphalangeal
most proximal most distal
most mass least mass
most effort least effort
Joint proximity and active effort

shoulder elbow radioulnar wrist base interphalangeal
most proximal
most mass
most effort

The more proximal a joint is (i.e. the closer to the torso), the more mass it moves. Therefore, distance from the torso inversely correlates to active effort.
Predictions

When articulatory ease is prized (as in casual conversation):
Predictions

When articulatory ease is prized (as in casual conversation):

- fewer joints are preferable to more joints; that is, freezing joints is preferred to grafting joints
When articulatory ease is prized (as in casual conversation):

- fewer joints are preferable to more joints; that is, freezing joints is preferred to grafting joints
- distal joints are preferable to proximal joints; that is, proximal joints are more prone to freezing than distal joints
Predictions

When articulatory ease is prized (as in casual conversation):

- fewer joints are preferable to more joints; that is, freezing joints is preferred to grafting joints
- distal joints are preferable to proximal joints; that is, proximal joints are more prone to freezing than distal joints

In Napoli et al. 2014, we tested these predictions.
Our first study: Design

- compiled a list of 500 distinct signs with manual movement, randomly selected from *Signing Savvy*
Our first study: Design

- compiled a list of 500 distinct signs with manual movement, randomly selected from Signing Savvy
- recruited two native ASL signers in their 30s, one male (from Austin TX) and one female (from Philadelphia), asked to sign the list as if in casual conversation
Our first study: Design

- compiled a list of 500 distinct signs with manual movement, randomly selected from Signing Savvy
- recruited two native ASL signers in their 30s, one male (from Austin TX) and one female (from Philadelphia), asked to sign the list as if in casual conversation
- coded signs for movement of the six joints, both for citation form and for each speaker’s casual version(s)
Our first study: Results

For casual variants that differed in joint usage from citation form, we found that the average number of joints per sign was about 0.7 joints lower for casual variants than for citation form.
For casual variants that differed in joint usage from citation form, we found that the average number of joints per sign was about 0.7 joints lower for casual variants than for citation form.

For multijoint signs, freezing was preferred to grafting: 97% of the casual variants involved freezing, while only 29% involved grafting (note that a given sign could have both).
For casual variants that differed in joint usage from citation form, we found that the average number of joints per sign was about 0.7 joints lower for casual variants than for citation form.

For multijoint signs, freezing was preferred to grafting: 97% of the casual variants involved freezing, while only 29% involved grafting (note that a given sign could have both).

First prediction fulfilled! Freezing preferred to grafting.
Our first study: Results

We also found that the mean change in usage (MCU) of a joint corresponded to its proximity (with a caveat):

![Diagram showing the mean change in usage (MCU) for different joints]
Our first study: Results

Second prediction (almost) fulfilled! Roughly speaking, the shoulder froze more often — and grafted less often — than more distal the elbow, and so on down the arm, except for the two most distal joints, the hand-internal joints...
Second prediction (almost) fulfilled! Roughly speaking, the shoulder froze more often — and grafted less often — than more distal the elbow, and so on down the arm, except for the two most distal joints, the hand-internal joints...

...which play two roles: movement and handshape. Changing hand-internal movement could be confused with changing handshape, so there is additional pressure beyond articulatory ease to avoid freezing or grafting at these two joints.
Our first study: Results

Second prediction (almost) fulfilled! Roughly speaking, the shoulder froze more often — and grafted less often — than more distal the elbow, and so on down the arm, except for the two most distal joints, the hand-internal joints.

...which play two roles: movement and handshape. Changing hand-internal movement could be confused with changing handshape, so there is additional pressure beyond articulatory ease to avoid freezing or grafting at these two joints. Second prediction rescued!
Reactive effort
Reactive effort: The effort used to isometrically resist incidental movement of one part of the body caused by movement elsewhere in the body.
Definition of reactive effort

Reactive effort: The effort used to isometrically resist incidental movement of one part of the body caused by movement elsewhere in the body.

For manual movement in a sign language, this is the effort needed to prevent the manual articulators from destabilizing (twisting or rocking) the torso, which we resist by engaging the abdominals, back muscles, obliques, etc.
Phonetics research has long focused on spoken language, and the speech articulators are too small to induce movement elsewhere in the body under normal circumstances, so reactive effort was never a consideration.
Phonetics research has long focused on spoken language, and the speech articulators are too small to induce movement elsewhere in the body under normal circumstances, so reactive effort was never a consideration.

But the manual articulators are much more massive and can easily cause incidental movement of the torso, especially when they have path movement.
Phonetics research has long focused on spoken language, and the speech articulators are too small to induce movement elsewhere in the body under normal circumstances, so reactive effort was never a consideration.

But the manual articulators are much more massive and can easily cause incidental movement of the torso, especially when they have path movement.

We seem to be the first researchers to look at reactive effort!
Avoidance of torso movement

Humans generally prefer to maintain an upright, forward-facing torso orientation.
Avoidance of torso movement

Humans generally prefer to maintain an upright, forward-facing torso orientation.

- bipedal locomotion induces twisting, which is destabilizing, but the human muscles evolved differently from other great apes to resist this twisting (the other great apes rock side to side to stabilize themselves) (Lovejoy 1988)
Avoidance of torso movement

Humans generally prefer to maintain an upright, forward-facing torso orientation.

- bipedal locomotion induces twisting, which is destabilizing, but the human muscles evolved differently from other great apes to resist this twisting (the other great apes rock side to side to stabilize themselves) (Lovejoy 1988)
- humans use eye gaze for nonverbal communication, and a fixed torso position helps (Kobayashi and Kohshima 2001)
Avoidance of torso movement

An upright, forward-facing torso orientation is also specifically preferred in signing, because torso movement often carries a linguistic function, such as surprise (Sze 2008), marking topic boundaries (Winston and Monikowski 2003), role shifting (Engberg-Pedersen 1993), etc. So extraneous torso movement could be misinterpreted by the addressee as meaningful.
Avoidance of torso movement

An upright, forward-facing torso orientation is also specifically preferred in signing, because torso movement often carries a linguistic function, such as surprise (Sze 2008), marking topic boundaries (Winston and Monikowski 2003), role shifting (Engberg-Pedersen 1993), etc. So extraneous torso movement could be misinterpreted by the addressee as meaningful.

Thus, torso stability is a crucial concern for humans in general and especially within the context of signing.
Avoidance of torso movement

Rotational inertia is how much an object resists being rotated (roughly speaking, the rotational equivalent of mass). Approximating the torso as a cylinder, we have:
Avoidance of torso movement

The formulas for these two moments of inertia are:

\[I_{\text{twist}} = \frac{mr^2}{2} \quad I_{\text{rock}} = \frac{m(3r^2 + 4h^2)}{12} \]
Avoidance of torso movement

The formulas for these two moments of inertia are:

\[I_{\text{twist}} = \frac{mr^2}{2} < I_{\text{rock}} = \frac{m(3r^2 + 4h^2)}{12} \]
Avoidance of torso movement

The formulas for these two moments of inertia are:

\[I_{\text{twist}} = \frac{mr^2}{2} < I_{\text{rock}} = \frac{m(3r^2 + 4h^2)}{12} \]

This means that twisting is more easily induced than rocking, because the torso offers less inherent resistance to twisting, requiring us to expend more reactive effort to resist it.
Predictions

Since articulatory ease is a factor in synchronic casual variation, which can lead to diachronic change, we predict to see bias in the lexicon, such that:

- **stable** signs (which induce no torso movement) should be more common than by chance frequency, and thus, **destabilizing** signs (those which induce either twisting or rocking), should be less common.
Since articulatory ease is a factor in synchronic casual variation, which can lead to diachronic change, we predict to see bias in the lexicon, such that:

- **stable** signs (which induce no torso movement) should be more common than by chance frequency, and thus, **destabilizing** signs (those which induce either twisting or rocking), should be less common

- signs that induce rocking (which has a higher moment of inertia) should be more common than signs that induce twisting
Our second study: Design

- compiled signs with **free, single or retraced two-handed path movement** for Italian Sign Language (LIS; Romeo 1991), Sri Lankan Sign Language (SLSL; Sri Lanka Central Federation of the Deaf 2007), and Al-Sayyid Bedouin Sign Language (ASBSL; Meir et al. 2012)
Our second study: Design

- compiled signs with **free, single or retraced two-handed path movement** for Italian Sign Language (LIS; Romeo 1991), Sri Lankan Sign Language (SLSL; Sri Lanka Central Federation of the Deaf 2007), and Al-Sayyid Bedouin Sign Language (ASBSL; Meir et al. 2012)
- coded those signs for six types of movement, along three cardinal axes (away-toward, left-right, up-down) and two relative directions between the hands (the same or opposite direction)
Our second study: Design
Our second study: Design

For example, **ACTIVITY** in ASL would be coded as +LR, since the hands move in the same direction along the LR-axis, while **ALLIGATOR** in ASL would be coded as −UD.
For example, **ACTIVITY** in ASL would be coded as $+_{LR}$, since the hands move in the same direction along the LR-axis, while **ALLIGATOR** in ASL would be coded as $-_{UD}$.

Signs can be multiaxial. For example, **PACK** in ASL would be coded at $+_{LR}$ and $-_{UD}$.
Monoaxial signs: four destabilizing movements (±LR, −AT, +AT, −UD) and two stable movements (+UD, −LR)
Multiaxial signs: thirteen destabilizing movements and one stable movement (we ignore cognitively difficult movements with AT and UD having opposite signs)
Our second study: Results

LIS
- Destabilizing: 18.7%
- Stable: 67.3%

SLSL
- Destabilizing: 23.8%
- Stable: 71.4%

ASBSL
- Destabilizing: 26.7%
- Stable: 73.3%

Nathan Sanders and Donna Jo Napoli
Active and reactive effort in sign language phonetics
We find that for both monoaxial and multiaxial signs, in all three languages, stable signs are more common than would be expected by chance frequency, and thus, destabilizing signs are less common than would be expected by chance frequency.

First prediction confirmed!
Monoaxial movements that induce torso rocking (+AT and −UD) are more common than those that induce torso twisting (+LR and −AT).
Our second study: Results

Multiaxial signs are rather complicated...
Our second study: Results

SLSL and ASBSL have too few signs to get solid results...
Summary
Evidence from ASL that active effort is reduced in casual conversation:

- number of joints decreases (by 0.7 joints per sign)
Evidence from ASL that active effort is reduced in casual conversation:

- number of joints decreases (by 0.7 joints per sign)
- average amount of freezing versus grafting of a joint (MCU) depends on joint proximity to torso (and thus, amount of mass being moved): shoulder freezes most and grafts least, then the elbow, then the radioulnar, then the wrist
Evidence from ASL that active effort is reduced in casual conversation:

- number of joints decreases (by 0.7 joints per sign)
- average amount of freezing versus grafting of a joint (MCU) depends on joint proximity to torso (and thus, amount of mass being moved): shoulder freezes most and grafts least, then the elbow, then the radioulnar, then the wrist
- base and interphalangeal get a pass, because they are hand-internal and thus used for handshape, which is a separate concern from articulatory ease
Reactive effort is a previously unstudied facet of articulatory effort that needs to be distinguished from active effort and can really only be studied by looking at sign languages. It is reduced in the lexicons of LIS, SLSL, and ASBSL, following the same mathematical pattern (which suggests a cross-linguistic pattern since they are unrelated):
Reactive effort is a previously unstudied facet of articulatory effort that needs to be distinguished from active effort and can really only be studied by looking at sign languages. It is reduced in the lexicons of LIS, SLSL, and ASBSL, following the same mathematical pattern (which suggests a cross-linguistic pattern since they are unrelated):

- stable movements are more common — and destabilizing movements less common — than would be expected by random chance
Reactive effort is a previously unstudied facet of articulatory effort that needs to be distinguished from active effort and can really only be studied by looking at sign languages. It is reduced in the lexicons of LIS, SLSL, and ASBSL, following the same mathematical pattern (which suggests a cross-linguistic pattern since they are unrelated):

- stable movements are more common — and destabilizing movements less common — than would be expected by random chance
- rocking movements may be more common than twisting movement, but more data is needed
Thank you!
References I

References II

References IV

References

