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1 Overview
Since the seminal work of Liljencrants and Lindblom (1972), a key testing ground
for functional, evolutionary, or emergentist approaches to sound systems has been
the typology of vowel inventories (for example, Lindblom 1986, Schwartz et al.
1997a, de Boer 2000). An important innovation of Schwartz et al.’s Dispersion-
Focalization Theory (DFT) was calculating the optimality (“energy”) of a vowel
system as a weighted combination of two separate auditory parameters:

(1) dispersion: maximization of the auditory distance between vowels (as in
Liljencrants and Lindblom 1972)

focalization: maximization of the importance of “focal” vowels such as [i]
and [y].

We report results of new vowel system simulations following the original DFT for-
mulas of Schwartz et al. However, our means of selecting candidate systems for
comparison explores the search space more effectively, allowing for more thorough
and accurate computation of DFT’s predictions. In particular, we find a greater
number of optimal systems than originally reported for DFT by Schwartz et al.,
throughout the entire range of possible parameter settings in DFT. This seems to be
a good result, since many of the newly discovered optimal systems have analogues
in the UCLA Phonological Segment Inventory Database (UPSID; Maddieson 1984,
Maddieson and Precoda 1989).

2 How Dispersion-Focalization Theory works
In DFT, vowel systems are compared according to their total “energy” according to
the distribution and types of vowels in each system. The lower a vowel system’s
total energy is, the more optimal it is. For a given vowel system {V1, . . ., VN}, each
vowel Vi is characterized by its first four formants 〈F1i, F2i, F3i, F4i〉, measured

in Bark.1 A system’s total energy EDF (2) is just the simple sum of its dispersion
energy ED (§2.1) and its focalization energy EF (§2.2):

(2) EDF = ED +EF

∗Our appreciation goes to audiences at Stanford, UCSC, and MIT, for their helpful feedback
on various stages of this work. All responsibility for the content of this paper lies solely with the
authors.

1We follow Schwartz et al. in calculating Bark with the formula fBk = 7 · sinh−1( fHz/650).



2.1 Dispersion energy
The dispersion energy of a vowel system is a measure of the overall auditory dis-
tance between the vowels in the system. The basic auditory distance between two
vowels Vi and Vj is the euclidean distance deuc between them in the auditory space
based on their values of F1 and effective F2 (a.k.a. “F2 prime”, a hypothesized per-
ceptual integration of F2, F3, and F4, symbolized as F2′; Carlson et al. (1970),
Carlson et al. (1975)), as demonstrated in Fig. 1. However, because F2′ spans a
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Figure 1: Ordinary euclidean auditory distance between vowels

significantly larger range (about 10–11 Bk) than F1 does (only about 4–5 Bk), this
simple euclidean measure of auditory distance overgenerates color (F2′) contrasts
in comparison to height (F1) contrasts. In order to generate more realistic predic-
tions about color vs. height contrasts, phonetic models of vowel dispersion must
compress the color space (Fig. 2). Furthermore, there is independent acoustic and
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Figure 2: Sample F2′ compression

perceptual support for weighting F1 more heavily than F2′. For example, F1 is
known to be louder than higher formants, and louder formants will weight more
heavily in perceptibility (see Lindblom 1986, Schwartz et al. 1997a, Benkí 2003).
The amount of weighting F2′ receives is represented in DFT by the parameter λ ,
which falls between 0 (for which dispersion is determined solely by F1) and 1 (for
which F1 and F2′ contribute equally to dispersion).

In DFT, the total dispersion energy ED (3) of a vowel system with N vowels is
the sum of the inverse squares of the λ -weighted distances di j between every pair
of vowels Vi and Vj in the system:
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(3) ED = ∑
i=1,...,N−1
j=i+1,...,N

1

d2
i j

where di j =
√

(F1i −F1j)2 +λ 2(F2′i −F2′j)2

From this equation, it is clear that the more vowels in a system that are at the
periphery of the auditory space, the lower the system’s ED will be. Thus, optimal
vowel systems will tend to be more peripheral in structure, giving a preference to
front unrounded vowels, back round vowels, high vowels, and low vowels, and a
strong avoidance of mid central vowels. In addition, optimal systems will have
vowels spread apart from each other, rather than clustered together.

2.2 Focalization energy
DFT additionally assumes that some vowels, so-called “focal vowels”, are preferred
in vowel systems due to their own inherent acoustic qualities, irrespective of the
relational role they play in the system as a whole. Specifically, a focal vowel in
DFT has one or more pairs of adjacent formants that are close together, causing the
formants to enhance each other, and making the vowel more perceptually robust
overall (Schwartz and Escudier 1987, 1989; cf. Stevens 1972). The focalization
energy EF of a vowel system is the sum of the focalization energies for each vowel
in the system. Each individual vowel’s focalization energy is the negative sum of
the inverse squares of the differences between adjacent formants:

(4) EF = α
N

∑
i=1

(
−1

(F1i −F2i)2
+

−1

(F2i −F3i)2
+

−1

(F3i −F4i)2

)

The value of the parameter α determines the relative influence of focalization vis-

à-vis dispersion. Like λ , α falls between 0 and 1.2

Note that the focalization energy is always negative. For a vowel like [i], which
has F3 and F4 very close together, (F3−F4)2 will be small, which means its inverse
will be large. This inverse is given a negative sign, so the overall focalization energy
for [i] will have a large magnitude negative component that reduces the total energy
of the vowel system by a larger amount than if its F3 and F4 were farther apart.
Thus, optimal vowel systems will have a larger number of focal vowels. The most
focal vowels in DFT by far are [i] and [y], with others ranked roughly as in (5):

(5) low EF high EF

(high magnitude negative) (low magnitude negative)
[i y] < [I] < [e] < [Y] < [E] < [æ a A] < [u U ø œ o O 6] < [@ 2] < [1 W 7]
most focal least focal

2Unlike with λ , there seems to be no reason why α cannot be greater than 1. It may be worth-
while in future work to explore variations of DFT for higher values of α .
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2.3 Prototypes
To limit the amount of computation time required to find optimal vowel systems,
Schwartz et al. utilize a finite, predetermined set of 37 vowel “prototypes” (Fig. 3).
These prototypes are based primarily upon the vowel system from UPSID, plus two
extra vowels in the gap in the acoustic vowel space between the back round vowels
and the back unrounded vowels. For each prototype vowel, Schwartz et al. set fixed
values for F1–F4 that are typical of an adult male speaker, with F2′ calculated from
F2–F4 by Mantakas et al.’s (1986) computation.
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Figure 3: Vowel prototypes in DFT

3 What Dispersion-Focalization Theory predicts
3.1 Phase spaces
With these equations and prototypes in hand, the task is to find, for any number of
vowels N, the optimal vowel system of size N, which has the lowest total energy
EDF (2) of all systems of size N. The result depends heavily on the particular values
of the two weighting parameters λ and α , so there will potentially be different
optimal vowel systems of size N for different choices of 〈λ ,α〉 pairs. To more
easily visualize the optimal vowel systems that are found for various choices of
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〈λ ,α〉, Schwartz et al. plot the optimal vowel systems in the λ ×α space by means
of a “phase space” diagram, which divides the λ ×α space into regions where
particular vowel systems are found to be optimal. For example, the phase space
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Figure 4: Schwartz et al.’s phase space for N = 5

diagram in Fig. 4 shows that the vowel system [i e a O u] is found to be optimal in
the region to the far left, where λ ≤ 0.2 (and for some values 0.2 ≤ λ ≤ 0.3 for
α > 0), while the vowel systems [i ‘e’ a ‘o’ u], [i y a ‘o’ u], and [i E a W u] are each
optimal in other regions of the λ ×α space.

3.2 Search algorithm
Searching the total set of possible systems to find the one single optimal system
is not a computationally trivial task, even with the limitation of only having 37
vowel prototypes to choose from. Thus, some search algorithm must be used which
picks out only certain vowel systems for consideration of being the most optimal.
Schwartz et al. utilize the following algorithm to make the search procedure more
manageable:

(6) a. For each value of N = 3, . . . ,9, pre-select a number of systems of size N
to be candidates for being the optimal vowel system for some 〈λ ,α〉 in

DFT.3

b. For various 〈λ ,α〉 pairs, compute the energy of every candidate system,

according to equations (2), (3), and (4).4

c. For each 〈λ ,α〉 pair, select as optimal the candidate system with the
lowest energy.

3Schwartz et al. do not specify precisely how these candidate systems are chosen, but presum-
ably, they are hand-picked based on inferences about what should be optimal in various regions of
the λ ×α space, as well as typological and phonetic plausibility. For example, [i e a o u] would
most certainly have been a candidate 5-vowel system, but there would be no apparent need to even
consider a system such as [ø 1 @ 7 W], so it would likely have been completely ignored.

4Again, Schwartz et al. do not specify precisely how these 〈λ ,α〉 pairs are chosen. Given the
locations of their key plotted points in their phase spaces, 〈λ ,α〉 seems to have been chosen largely
at fixed intervals, though this appearance could just be an artifact of their graphing method.
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However, there are at least two ways this search algorithm can go wrong:

(7) a. The initial posited candidate systems in step (6a) might not include the
system that is actually the most optimal. Some truly optimal systems may
be overlooked because they incorrectly appear to a human to be
“obviously” less optimal than some other system, when in fact, the actual
calculations prove otherwise.

b. The choice of 〈λ ,α〉 pairs in step (6b) may not be fine-grained enough.
This would result in gaps in the phase space, which could cause some
regions of the phase space to be presumed to be larger than they actually
are and potentially miss out on finding some optimal systems. For
example, had Schwartz et al. not considered any value of α < 0.1, then
the vowel system [i E a W u] would not have been found to be optimal, as
can be seen in the phase space diagram in (4).

3.3 Our revised search algorithm
Using the same prototypes and same functions as Schwartz et al., we used a dif-
ferent search algorithm (described in (8), graphically schematized in Fig. 5) for
finding optimal systems and mapping out the phase space, to alleviate or avoid the
problems in (7).

(8) a. For each value of N = 3, . . . ,9, initialize a catalog KN of all vowel systems
of size N already shown to be optimal by Schwartz et al. anywhere in the
λ ×α space. For example, as per (4):

K5 =

{
[i e a O u], [i y a ‘o’ u],

[i E a W u], [i ‘e’ a ‘o’ u]

}

This initialized catalog only needs to be created once for each N.

b. For each value of N, randomly sample 5000 〈λ ,α〉 pairs drawn from

[0,1]× [0,1].5

c. For each 〈λ ,α〉 pair, randomly sample enough candidate vowel systems
of size N drawn from the 37 vowel prototypes to have a 99% chance of
finding a system that is in the top 0.1% of all possible systems in terms of

optimality (lowest energy).6 Add to this set of candidates all of the known
optimal systems from KN .

d. For each 〈λ ,α〉 pair and its set of candidate vowel systems, compute the
energy of every candidate system, including those from KN , according to
equations (2,3,4).

e. For each 〈λ ,α〉 pair and its set of candidate vowel systems, select as
optimal the candidate system with the lowest energy. If this optimal
system is not yet in KN , add it. Otherwise, make no change to KN .

5Random sampling in this search algorithm was done using the runif() and sample() func-
tions in the R programming language (Ihaka and Gentleman 1996).

6See Appendix A for mathematical discussion of what constitutes “enough” candidates.
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f. Repeat steps (b)–(e) five times, and then continue repeating them until KN

no longer changes.

N KN

b

b

b

b

b

b

b

b

b

b
b

bb

b

b
b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b
b

b

b

b
b

b

b

b

b b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b bb

b

b b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b
b

b b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

λ ×α

︷ ︸︸ ︷

Y

3
7

æ

@
O
· · · +KN

︸ ︷︷ ︸

︷ ︸︸ ︷

EDF ,EDF , · · ·
i

a

u

(a)

(b)

(f)

(c)

(c)

(d)

(e)

(e)

Figure 5: Schematic diagram for (8)

3.4 Comparison of results
Fig. 6 shows the phase space diagrams obtained bySchwartz et al.’s original search
algorithm (6) and by our improved algorithm (8). The two vowel systems found to
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Figure 6: Phase space diagrams for N = 3

be optimal by Schwartz et al., [i a ‘o’] and [i a u], are both found to be optimal by
our algorithm as well (indicated by 3 in the phase space diagram), but in a smaller
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region of the λ ×α space (the volcano-shaped region in the middle, centered around
λ = 0.3). Our algorithm also finds five new vowel systems to be optimal in the
remaining regions of the λ ×α space. Of the five new optimal systems, [i a o]
is optimal only in a tiny sliver of the phase space and is very similar to already
predicted [i a ‘o’], so this system is only marginally “new”. The remaining four
are not attested in UPSID and seem to be phonetically implausible. Thus, while
we do not find any definitively new optimal systems for N = 3 that are attested in
UPSID, our results show that the parameters λ and α must be limited to the “magic
volcano” region, since values outside that region result in unattested, implausible
optimal vowel systems.

There are still some remaining 3-vowel systems attested in UPSID that do not
yet appear to be optimal in DFT, even with our new search algorithm. For example:

[i æ u] Shilha
[e a o] Alabama and Amuesha

[‘@’ a ‘o’] Qawasqar

∗ ∗ ∗

Interlude: Evaluating the results using UPSID
UPSID is an invaluable resource, but using it to evaluate predictions
raises significant challenges. First, there is the problem of insufficient
precision. When a researcher notates 〈e〉, does this represent [e], [‘e’],
or [E]? UPSID often uses 〈‘e’〉 when the source description doesn’t
make the precise height clear, conflating the difference between truly
mid and unknown mid. Analogous questions apply to other vowels,
such as 〈u〉 (does this represent [u], [U], or even [W] in a less careful
source?). Furthermore, if a phoneme has multiple different allophones,
which one is actually recorded in UPSID?

On the flip side, UPSID also seems to have too much precision. There
are so many symbols used by UPSID that many vowel systems appear
only once. This makes it hard to talk about the frequency of vowel
systems. Schwartz et al. (1997b) address this problem by collapsing
various kinds of distinctions in UPSID and in DFT’s outputs, using a
representative vowel for a set of similar vowels when only one member
is present, according to the following scheme:

[i I] → [i]
[y Y] → [y]

[W Wfl u U] → [u]
[1 1fl 0 0fl] → [1]

[ø ‘ø’ œ] → [ø]
[7 ‘7’ 2] → [7]

Both of these problems make it difficult to use UPSID more rigorously.
However, even with these problems, UPSID is the best available re-
source of its kind, so we use it here as our measurement of how well
DFT predictions match attested reality, with the understanding that the
attestations themselves may be somewhat inaccurate.

∗ ∗ ∗
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As with N = 3, our new search algorithm finds all of Schwartz et al.’s optimal
systems for N = 4, but not in the exact same regions of the λ ×α space (Fig. 7).
Three of the four matching vowel systems, which happen to also be attested in
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Figure 7: Phase space diagrams for N = 4

UPSID, are found in the same magic volcano region, while the fourth matching
system [i y a u], lies outside this region and is unattested in UPSID. In addition,
our new search algorithm finds six new vowel systems to be optimal in the λ ×α
space, listed in Fig. 8, labelled with italicized letters that correspond to the phase
space regions with matching letters in Fig. 7(b). Two of these new optimal systems,
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Figure 8: Newly discovered optimal systems for N = 4

a[y e E a] and b[i e E a], are unattested in UPSID, which is not surprising given their
phonetic implausibility. The third new optimal system, c[i e a O], is not attested di-
rectly in UPSID, but it is similar to attested systems, such as Klamath and Tacana’s

[i ‘e’ a ‘o’]. The three remaining new systems, d[i E a U], e[i E a u], and f [i @ a u],
are each attested in UPSID, either exactly (in Murinhapatha, Moxo, and Jebero,
respectively) or very similarly (Cayapa’s [i E A U], Lushootseed’s [I ‘@’ a U], and
Ivatan, Paiwan, and Yupik’s [i ‘@’ a u]). Thus, our revised search algorithm shows
that DFT’s ability to predict extant systems is better than originally thought.

The system f [i @ a u] is also interesting because it contains [@], which calls into
question the need for Schwartz et al.’s (1997b) “transparency hypothesis” for [@], in
which neither the presence nor absence of [@] plays a role in the acoustic dispersion
of a vowel system. Boë et al. (1994) argue that [@] is difficult to obtain in DFT,
but as our results show, there is indeed a region of the phase space (albeit small!)
around 〈0.55,0.01〉 where an optimal 4-vowel system containing [@] is predicted by
DFT without modification.
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There are still numerous remaining 4-vowel systems attested in UPSID that do
not yet appear to be optimal in DFT. For example:

[i a O u] Tiwi
[i æ a u] Quileute
[I 5 a Wfl ] Nunggubuyu
[i 1 a ‘o’] Maranao

[1 E a ‘o’] Margi
[1 3 a 6] Yessan-Mayo

[‘e’ ‘@’ a ‘o’] Upper Chehalis

The pattern established with N = 3 and N = 4 continues with N = 5, with a
minor twist (Fig. 9). Our search algorithm finds three of Schwartz et al.’s optimal
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Figure 9: Phase space diagrams for N = 5

systems, again inside the magic volcano, but not [i y a ‘o’ u]. Since this system
lies outside the magic volcano and is not attested in UPSID, it does not seem to be
problematic that we do not find it. Again, we also find new optimal systems not
found by Schwartz et al.’s search algorithm (Fig. 10). Of the eight new optimal
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Figure 10: Newly discovered optimal systems for N = 5

systems, the two systems a[I y ‘e’ a 6fi] and b[i I ‘e’ a 6fi] are unattested in UPSID and
seem phonetically implausible. Three other systems, c[i ‘e’ a 6fi U], g[i y E a u], and
h[i y æ 6fi u], while potentially plausible, are also unattested in UPSID. Furthermore,
all five of these systems are optimal only in phase space regions outside the magic

volcano. The system d[i æ a ‘o’ u] is not attested directly in UPSID, but it is similar
to attested systems, such as Taishan’s [i æ a O u], and with a bit of a stretch, possibly
Nez Perce’s [I æ a O W]. The remaining two systems e[i E a o u] and f [i E a ‘o’ u] are
both directly attested in UPSID (Jacaltec and Nasioi; and Batak, Hawaiian, Yucuna,

10



Yagaria, and Baining), again showing that our new search algorithm confirms better
predictions for DFT.

There are still numerous 5-vowel systems attested in UPSID that do not yet
appear to be optimal in DFT. For example:

[i 1 a O u] Papago
[i 1 ‘e’ a ‘o’] Abipon
[i 1 E a ‘o’] Cofan
[i E a O o] Tseshaht
[i e a U u] Kunimaipa

[i e 5 A u] Koya
[i ø æ a 7] Hopi
[i ø

¯
E a U] Malakmalak

[‘e’ æ O u W] Hixkaryana

Full discussion of the results for N = 6, . . . ,9 is beyond the scope of this paper,
but the raw results themselves can be found in Appendix B.

4 Wrap-up and future work
Our improved search algorithm leads to different results for DFT’s predictions. In
particular, we find a greater number of optimal systems throughout the entire λ ×α
space for N = 3, . . . ,7 (see Table 1; note that Schwartz et al. do not give details of
their results for N = 8 or 9). Many of these newly discovered optimal systems are

N 3 4 5 6 7 8 9
Schwartz et al. 2 4 4 4 5 – –
Sanders and Padgett 7 10 11 11 9 13 10

Table 1: Total number of optimal systems found for each N

attested in UPSID, which shows that the predictive power of DFT is greater than
originally thought.

In addition, we have gathered preliminary statistics on the percentage of systems
missing one of the “corner” vowels ([i], [u], and [a]). They show an interesting
asymmetry, with [u] generally more likely to be missing and [a] less likely to be
missing (Fig. 11; there is also an overall downward trend, which is the result of

3 4 5 6 7 8 9 10
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30

40

50

60

N

%

[u]

[i]

[a]

Figure 11: Percentage of UPSID systems missing a corner vowel

larger vowel systems being forced to make use of corner vowels more often in order
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to satisfy dispersion). An articulatory explanation may help explain the difference
in behavior among the corner vowels, so an important future extension of this work
is to add an articulatory energy component to the basic DFT equation, with more
articulatorily extreme vowels having higher articulatory energy, and thus, creating
less optimal systems. This would also increase the relative optimality of systems
containing vowels like [@], further obviating Schwartz et al.’s (1997b) transparency
rule for [@].

Finally, further thought needs to be given to precisely what it is that DFT is
trying to predict. Are we only concerned with truly optimal systems, or should rel-
ative optimality of systems tie into relative frequency of those systems? Answering
this question is necessary for deciding if and how DFT should be adjusted to also
predict “crazy” vowel systems like Qawasqar’s [@ a ‘o’].

Appendix A: How many candidates do we need?
In order to have a 99% chance of randomly selecting one of the systems in the top
0.1% of all possible systems in terms of optimality, we need to randomly sample
4,603 candidate systems.

Proof: Let S be the total number of systems to be randomly sampled. The
probability that not a single one of them is in the top 0.1% is also the probability
that all of them are in the bottom 99.9%. Each one has a probability of 0.999 of
being in the bottom 99.9%, so the probablity that all of them are in the bottom is all
S of those 0.999 probabilities multiplied together, which is 0.999S.

Having all of our sampled systems be in the bottom 99.9% would of course be
a bad result, since our hope is to find the one true optimal system, so we want the
probability of this event occurring to be as small as possible. A 1% chance of failing
to get any optimal system seems acceptable, so we set 0.999S = 0.01 and solve for
S to see how many systems we need to sample:

0.999S = 0.01

S · log(0.999) = log(0.01)

S =
log(0.01)

log(0.999)
= 4,603

Our actual failure rate should ultimately be smaller than 1%, due to the use of
the known optimal systems from the catalogs (because some of these are likely to be
the truly optimal systems we hope to find), due to the repetition in step (8f) (because
we are sampling a potentially different set of 4,603 systems in each cycle), and due
to the pseudo-genetic nature of the search algorithm (because this adds every newly
discovered optimal system to the catalog, ensuring that all known strong contenders
for optimality must be considered in every subsequent cycle).
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Appendix B: Predictions for N = 6,. . . ,9
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Figure 12: Phase space diagrams for N = 6; [i e E a ‘o’ u] is missing in (b)
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Figure 13: Newly discovered optimal systems for N = 6
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Figure 16: All predicted optimal systems for N = 8
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