
Chapter 35
Data-driven approaches

Rebecca Knowles and Nathan Sanders

35.1 Introduction

Data-driven approaches are a natural fit for identifying and quantifying vowel harmony.
As vowel harmony is a recurrent pattern with a relatively limited range of variability
(potential size of the harmonic domain, number of potential harmonic features, number
of potential targets and triggers, etc.), it is amenable to computational techniques
commonly used for pattern recognition. However, vowel harmony is often not strictly
categorical; some vowels and/or words behave exceptionally, so statistical approaches can
more accurately capture a language’s tendency towards harmony than is possible with
deterministic rules. Data-driven approaches to vowel harmony can be used for tasks like
generating hypotheses about the presence of harmony in a language where it was not
previously known to exist (though most existing work is proof of concept, tested on known
harmonic systems), modelling child language acquisition of harmony systems, or even
measuring harmony for comparison across languages or within one language diachronically.

Statistical and computational approaches to vowel harmony vary widely in both their
end goals and the techniques they employ (see Chapters 22 and 34, this volume, for
discussion of computational methods). Nevertheless, the approaches we discuss in this
chapter can all be described generally as consisting of three main components: input,
algorithm, and output. The input to the model is the data itself, optionally including
some form of supervision (such as labeled data or external knowledge). Inputs could be
any combination of lexical databases, digitized writings, transcriptions, etc. The algorithm
is then applied to the input. Typically, this involves computing statistics from the data,
which may be examined directly or iteratively used to fit parameters of some model.
Finally, the output may consist of a measurement (for example, the magnitude of harmony
in a language, as in Sanders & Harrison 2012), a clustering of units (such as clusters of
harmonic vowels, as in Kodner et al. 2017), a visualization (heat maps, vowel cluster plots,
etc.; see Section 35.4 for discussion and examples), and/or other human-interpretable
information about the data.

As the starting point for data-driven approaches, the nature of the input is crucial.
Different types of inputs pose different challenges, and must be taken into account when
designing algorithms and interpreting outputs. We discuss this in Section 35.2. Different
models and approaches allow for different representations of vowel harmony systems, so
the choice of model has an impact on what is learned and/or missed. Thus, when building
a statistical model of vowel harmony, a researcher must not only take into account the
nature of the data itself, but also any relevant linguistic principles that may underlie
the data. We discuss some important linguistic considerations for model selection in
Section 35.3, describing various models along the way. In Section 35.4, we describe ways
that models of vowel harmony can visualize their output. We conclude in Section 35.5 with
a summary of major successes and challenges of data-driven approaches to vowel harmony,
as well as future avenues worth exploring.
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35.2 Types of data sources

The choice of data source is often constrained by what is available to the researcher.
For example, there may be only limited data available, as for so-called “low-density”
or “low-resource” languages (those with little to no online texts, especially common for
Indigenous and minority languages), which may be difficult to acquire and/or insufficient
to provide reliable results. Further, data that is available may have been collected and
preprocessed in a variety of ways that can have a profound impact on the output of any
statistical or computational approach. In this section, we discuss some considerations that
must be taken into account based on the type of text data source being used as input.1

The issues of focus in this section are transcription versus orthography, analysis
of harmony across types versus tokens, and anomalous word types. These are often
overlooked or dismissed as “preprocessing”, but in fact a careful understanding of these
issues and how to handle them is necessary for the design of the model and interpretation
of its output. This is especially important for approaches that seek to compare vowel
harmony across languages, since this requires controlling for differences in datasets
between languages.

35.2.1 Transcription versus orthography

Text data for computational study of vowel harmony can be broadly classified into two
forms: transcription (a symbolic representation of pronunciation with a system like the
International Phonetic Alphabet; IPA) and orthography (the language’s writing system).
While these two forms are often related, the relationship can vary, from logograms (with
little or no explicit phonological information, as with Chinese hanzi and Japanese kanji),
to abjads (ordinarily indicating consonants and only some vowels, as with Arabic and
Hebrew scripts), to opaque relationships between writing systems and pronunciation (e.g.,
due to sound change over time), to languages with near one-to-one mappings between
transcription and orthography (such as Finnish).

Since vowel harmony is a phonological phenomenon and transcription provides accurate
information about the sounds of a language, transcription would ordinarily be an ideal
choice. For a language without an orthography, transcriptions may be the only text
data available. However, transcriptions are not without drawbacks. While the IPA is an
international standard, many different traditions and conventions exist (Americanist,
Teuthonista, pinyin, etc.). Just as transcription practices vary, so may character encodings.
Thus, it can be challenging to combine different datasets for one language, let alone
compare results across languages, since a variety of transcription systems, levels of detail,
and/or character encodings may need to be recognized and accommodated. Finally,
transcriptions are time-consuming and expensive to produce; even for fairly broad
transcription, it can take trained professionals 15–40 minutes to transcribe a single minute
of audio (Demuynck et al. 2002). Creating a sufficiently large dataset for robust analysis
requires a combination of time, money, and expertise that may not be available.

1While audio data may be a more direct data source for the study of vowel harmony, this chapter and
works cited herein focus only on text data. Analysis of audio data faces significant hurdles (such as
segmentation and segment classification) largely orthogonal to the issue of vowel harmony.
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Because of these drawbacks, texts written in a language’s existing orthography are
an attractive option. High-density languages already have enormous amounts of text
corpora readily available, allowing researchers to pull millions of words from online
databases in a matter of seconds, saving significant time and money as compared to
audio transcription. Such databases often include corpora like the New Testament (which
contains hundreds of thousands of words), commonly used for comparative work due to
the large number of languages into which it has been translated. However, in order to
be useful for analyzing vowel harmony, the orthography must be relatively transparent,
with a one-to-one or nearly one-to-one correspondence with pronunciation. Without
this, any conclusions drawn may not accurately reflect the phonology of the language.
Even languages with relatively consistent writing systems, such as Spanish and Turkish,
may still have unpredictable differences between spelling and pronunciation. Additional
challenges for using orthographic data may arise if a language has multiple writing systems
and/or an inconsistent writing system, which can introduce noise into the results and
require extra steps to clean up the data.

Another option is to approximate a transcription from an orthographic form. For
example, Szabó & Çöltekin (2013) convert text data to the IPA using text-to-speech
systems. This provides a way to bridge the gap between large data and phonetic data, but
it also requires a text-to-speech system for the language of interest which would need to be
built if one does not exist.

35.2.2 Types versus tokens

Given a dataset, a critical preprocessing decision is whether to use types or tokens. A
type is a member of the set of all unique words in a text, while a token is any individual
instance of a type and may be repeated. Where the only data available is a word list
or dictionary, this decision is moot, since the lack of repetition renders type and token
equivalent; nevertheless, the researcher must consider whether the word list contains
a sufficient range of examples to adequately demonstrate vowel harmony (or the lack
thereof).

The choice between types and tokens requires consideration of what it means to
quantify vowel harmony in a language. Using tokens to derive statistics places more weight
on frequent words; we expect this to be informative about the level of vowel harmony in
the text as a whole. Using types places equal weight on frequent and infrequent words, so
that numerous rare inflected forms that demonstrate harmony may outweigh a handful
of common disharmonic short words; this may tell us more about an underlying harmony
which would not be as apparent from a full text. While these two approaches could lead to
different conclusions, Szabó & Çöltekin (2013) and Knowles (2012) experiment with both
types and tokens, and find similar results between the two.2 Depending on the corpus,
type- or token-based approaches may over- or under-emphasize anomalous words, such as
proper nouns (see Section 35.2.3).

2Szabó & Çöltekin (2013) experiment with Hungarian and Turkish, with Dutch and English as
non-harmonic control languages, while Knowles (2012) uses Finnish, Turkish, Tuvan, and Swahili, with
Japanese and Indonesian as non-harmonic controls. We describe both approaches in Section 35.3.1.
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35.2.3 Anomalous words

Datasets can contain anomalous words that could influence harmony measurements in
ways that may or may not be desirable. First, as a preprocessing data cleaning step, many
approaches remove words that contain numeric or certain non-alphanumeric characters,
since these may not represent genuine words in the language and, thus, would fall outside
the scope of vowel harmony anyway.

Some approaches also remove words containing only one vowel (e.g., Harrison et al.
2004; Szabó & Çöltekin 2013). This may be done to prevent them from skewing overall
vowel counts (which are typically used as a baseline to measure vowel harmony) or because
the model specifically performs pair-wise measures, though others keep them in precisely
to take them into account when calculating baseline vowel counts. Knowles (2012)
compares models with and without monosyllabic words, and finds minimal differences; like
the type/token distinction, this appears to be a theoretically important distinction that
may not always have major practical implications.

Proper nouns can also be a source of anomalies, particularly if they do not have their
origin in the language itself. The Bible is commonly used as a corpus for data-driven
approaches to computational linguistics and natural language processing due to its
many translations, but it is replete with proper nouns. When those proper nouns are
left unmodified or simply transliterated during the translation process, they may fail to
exhibit the language’s harmony system, potentially obscuring its measurement if they are
sufficiently frequent.

Loanwords are another potential source of anomalies. They may be borrowed without
being fully adapted to the phonology of the recipient language, retaining the donor
language’s vowel harmony (or lack of harmony), potentially making the recipient language
appear more (or less) harmonic than it really is.

These types of anomalous words can be removed from the corpus, though this can
be difficult to do precisely, especially in the case of loanwords, where the history of the
individual words may not be known. Their influence can instead be controlled through
the decision to use types rather than tokens, which would reduce the impact of frequent
anomalous words. Alternatively, these words can be simply left in the data, with the
understanding that they are part of the language, and thus, should be included in any
calculation of vowel harmony.

35.3 Linguistic considerations

35.3.1 Morphological structure

Vowel harmony is often discussed at the word level (Chapter 17, this volume), and as
such, most data-driven approaches to vowel harmony consider harmony at the whole
word level, defining the word through whitespace (and punctuation) tokenization (see
Chapter 19, this volume, for other ways that morphological structure can be relevant).
The choice of boundaries naturally constrains the harmony patterns that can be detected
algorithmically. For example, Karajá (a Macro-Jê language spoken in Brazil) exhibits
vowel harmony across word boundaries (Ribeiro 2002), and in Chamorro (an Austronesian
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language spoken in Guam and the Mariana Islands), vowel fronting is triggered by certain
particles that are written as separate orthographic words (as in i gima’ ‘the house’;
cf. guma’ ‘house’; Topping 1968); this harmony pattern would not be captured by an
approach that looked for harmony only within orthographic words (Mayer et al. 2010). See
Chapter 20, this volume, for discussion of harmony across word boundaries.

Many approaches ignore consonants and consider only vowels, treating vowel harmony
as a local process between tier-adjacent vowels rather than a long-distance phenomenon.
Harrison et al. (2004) takes a supervised approach to measuring vowel harmony, taking as
input a corpus (represented as whole words with consonants ignored) and known harmony
patterns and producing as output a measure of how harmonic the language is (relative
to a corpus-specific harmony threshold). This is done by first determining, based on the
known harmony patterns, whether each word in the corpus is harmonic or not, then
comparing the number of harmonic words to the expected number of harmonic words that
would occur in a similar corpus with vowels distributed uniformly at random.

Hidden Markov model (HMM) approaches (Baker 2009; Goldsmith & Xanthos 2009;
Knowles 2012) apply a common natural language processing technique to the problem
of vowel harmony. An HMM includes a “start” state, an “end” state, and some number of
connected hidden states. At each point in time, there is a transition with some probability
from one hidden state to another, followed by the emission of a particular observable
item with some hidden-state-specific emission probability. For vowel harmony, what is
being emitted (observed) is the sequence of vowels (typically within one word at a time).
The hidden states can be thought of as representing vowel classes (such as a natural
class defined by a single value of a binary feature). The probabilities can be initialized
randomly, or based on external knowledge (e.g., vowel frequencies). The harmony patterns
learned are limited by the configuration of the model: an HMM with two hidden states can
learn one two-class harmony system (i.e., both natural classes for a binary feature, such
as round and nonround), while learning two separate two-class harmony systems would
require at least four hidden states. The parameters of the model (transition and emission
probabilities) are fit to a dataset using an iterative algorithm. Intuitively, fitting an
HMM to a language with vowel harmony will result in an HMM with a low between-state
transition probability (a word is unlikely to contain vowels from more than one harmonic
class) and with one state that has high emission probabilities for one class of vowels (the
state can be thought to represent that class) while the other state(s) represents the other
class(es). HMM-based approaches have been shown to successfully learn harmony patterns
for Turkish, Finnish, Hungarian, and other languages. While HMM approaches do model
harmony at the whole word level (that is, the start of the word starts at the “start” state,
each vowel is emitted by one of the hidden states, and reaching the “end” state indicates
the end of a word), they also rely on the Markov assumption: that the probability of the
next state depends only on the current state (arguably treating vowel harmony as a local
phenomenon between consecutive vowels).

Knowles (2012) also uses word boundaries, and makes an even stricter whole-word
harmony assumption with a mixture of unigrams model. That model can be thought of
as a special case of the HMM, one where there is zero probability of transitioning between
states. A measure of how strongly the two learned probability distributions in the mixture
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of unigrams model differ correlates with results from the Vowel Harmony Calculator
(Harrison et al. 2004).

Other approaches keep the word boundary intact, but only compute statistics from
pairs of vowels. Sanders & Harrison (2012) do this with the goal of comparing the level
of harmony across languages (with some level of external knowledge). They extract all
tier-adjacent vowel pairs, compute raw pair-wise harmony for each feature of interest
(such as height or backness), randomly generate corpora with the same distribution of
vowel tokens and lengths, compute that same pair-wise harmony for the feature of interest
across all random corpora, and then (making the assumption that the random corpora are
distributed normally), compute the z-score of the true corpus from the mean (interpretable
as the number of standard deviations from the mean). This allows them to uncover
patterns of harmony as well as anti-harmony (less harmony than would be expected), and
their results correlated with work in Harrison et al. (2004). Szabó & Çöltekin (2013) take a
point-wise mutual information approach, fitting a general linear model where the response
variable is the point-wise mutual information for vowel bigram types, and the features are
indicator variables representing information about vowel bigram harmony.3 Goldsmith &
Xanthos (2009) produce matrices of vowel co-occurrences, to which they apply spectral
decomposition to extract eigenvectors that show clusters of vowels. Mayer et al. (2010)
also measure vowel co-occurrences for visualization purposes (see Section 35.4).

At the other extreme, it is possible to ignore word boundaries, building models that
take as input a stream of characters without any information about the beginning or
end of words. Building statistical models of vowel harmony acquisition, Kodner et al.
(2017) motivate the use of character streams without word boundaries by noting that
infants’ sensitivity to vowel harmony predates their ability to segment continuous speech.4
They model vowel harmony using tier-adjacent vowel pairs, computing point-wise mutual
information (logarithm of the normalized conditional probability of the vowel pair
occurrence). They then perform k-means clustering to divide the vowels into two groups.
Given additional information about vowel features, they can learn a second harmony
system by pairing vowels from the first two groups across one feature dimension, and then
performing a second round of k-means clustering. They evaluate across eight languages,
including six with harmony (Turkish, Finnish, Hungarian, Uyghur, and Warlpiri), one
with historical remnants of harmony (Estonian), and two without (German and English);
they successfully learn one harmony system but have mixed results for a second. It is
worth noting that there is another statistical and acquisition-based argument for ignoring
word boundaries when computing pair-wise harmony measures: vowel pairs that cross
boundaries are likely less frequent than those within words (unless the language has
very short words), so the statistics should still express the language’s harmony. In fact,
harmony patterns may help children learn to segment (Mintz et al. 2018), and adults can
also use them to segment speech (Suomi et al. 1997; Kabak et al. 2010).

3They define their bigrams to be pairs of vowels with one or more consonants between them, so as not to
treat diphthongs in the same manner as other tier-adjacent vowel pairs.

4They extend this work in Caplan & Kodner (2018), which has a greater focus on models for child language
acquisition. For more discussion of vowel harmony acquisition outside of computational approaches, see
Chapter 38, this volume.
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35.3.2 Phonological considerations

As we note, most approaches to the computational study of vowel harmony focus only
on vowels, separating them out in a tier-based approach. Such models are unable to
capture the effects of consonants in harmony systems. For example, in Assamese (an
eastern Indo-Aryan language spoken in India), regressive ATR harmony can be blocked
by nasal consonants, as in [sEkOni] ‘strainer’, which would be *[sekoni] if harmony were not
blocked by [n] (Mahanta 2007; for more on Assamese harmony, see Chapters 24 and 56,
this volume).

Further, consonants may actually participate in harmony due to assimilation
(Chapter 2, this volume), which could facilitate discovering vowel harmony if harmonizing
consonants were taken into account in the statistical analysis, since longer sequences
of harmonizing consonants and vowels would be even less likely to arise by chance
than vowels alone. For example, in Turkish, velars and laterals are palatalized in
front-harmonizing contexts (Chapter 59, this volume), as seen in the alternations of
the velars and laterals in [gjøz-ljer] ‘eye-pl’ versus [kWz-lar] ‘girl-pl’. While blocking
consonants such as Assamese nasals may be captured by a model that includes consonants
as input (we discuss this further in Section 35.3.3), the issue of consonant assimilation
as in Turkish provides additional challenges, particularly for written corpora. Consonant
assimilation is often not captured by the orthography and would only be apparent in
sufficiently narrow transcriptions.

A rare example of models with the potential to capture more of these phonological
effects are those proposed by Goldsmith & Riggle (2012). Their aim is to examine models
of vowel harmony through an information theoretic lens, comparing different models on
the basis of the probability that they assign to text. They find that their first attempt
to build a model using an autosegmental approach – namely by using a combination of
a character bigram model where all vowels are collapsed to a single representative “V”
along with a bigram model that operates on the vowel tier – underperforms a standard
bigram model. They find more success with a Boltzmann model that incorporates unigram
character probabilities, mutual information between adjacent characters, and mutual
information between tier-adjacent vowels, which shows that the interaction between
consonants and vowels cannot be completely cleanly captured by two fully separate tiers.
As they focus on a particular language, Finnish, measuring whole-word harmony on a text
corpus, their information-theoretic measures capture model fit, but do not focus on how
a learned model could be used by a linguist to provide insight about the particular vowel
harmony patterns in a given language. An examination of model probabilities, perhaps
through a visualization tool like those described in Mayer (2012), could have the potential
to illuminate such patterns.

35.3.3 Transparent and blocking segments

A common feature of vowel harmony systems is the presence of segments that do not
participate in the harmony system. These include transparent vowels: even though they
may appear disharmonic, the remaining vowels will be harmonic with one another, as
though the transparent vowels in the word were not there at all (Chapter 21, this volume).
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The same often holds true for consonants (Chapter 2, this volume), which enables
the approaches that strip out all consonants in order to treat vowels as tier-adjacent.
However, there are instances of opaque vowels and consonants which block harmony. Many
approaches have some way of handling or evaluating transparent vowels (e.g., Ozburn
2019), but few provide a way to handle opaque vowels. The frequent design decision
to remove all consonants from model consideration implicitly treats all consonants as
transparent. Most systems focus on vowels only, making it impossible for the systems to
handle or highlight harmony-blocking consonants. As with the other challenges discussed
so far, different approaches handle (or ignore) transparent and blocking segments in
different ways.

Systems like the Vowel Harmony Calculator (Harrison et al. 2004), which incorporate
external knowledge, can easily allow researchers to designate specific transparent vowels
as not participating in the harmony process. HMM approaches also handle transparent
vowels quite naturally; these typically appear as vowels that can be emitted by a state
representing any vowel class (Baker 2009; Goldsmith & Xanthos 2009; Knowles 2012).
While a vowel that participates in the harmony system will have high emission probability
in one state (the state associated with its harmonic class) and low probability in the
other, a transparent vowel will not be marked in such a way. Rather, it will have similar
probabilities of being emitted by either state. Capturing opaque vowels may require
additional states or a bigram HMM, but this remains an open research question. Using a
spectral decomposition approach on Finnish vowel co-occurrence, Goldsmith & Xanthos
(2009) find that the second eigenvector clusters the neutral (transparent) vowels into their
own group, separate from front and back vowels (see Chapters 18 and 67, this volume, for
more about transparent vowels in Finnish). However, they note this visually, and do not
provide an automatic way of extracting these clusters from the eigenvector information.

35.4 Visualization of vowel harmony

Many approaches discussed so far have the goal of providing a linguist with a form of
hypothesis generation – a hint to examine a language’s data for evidence of harmony –
or hypothesis confirmation of suspected harmony patterns. For many people, an intuitive
way to interact with such data is visually. Even approaches like the spectral decomposition
approach present their output (the second eigenvector) visually, such that the reader can
immediately see vowel clusters on a number line (Goldsmith & Xanthos 2009). HMMs also
have an interpretable visual form, though it may require the viewer to read out transition
and emission probabilities.

Several works focus specifically on building interpretable visualizations of vowel
harmony, intended to be useful to linguists. Mayer et al. (2010) compute vowel succession
probabilities and produce a matrix of φ coefficients (a value between 0 and 1, representing
the association strength between a pair of vowels). They also examine whether each vowel
bigram occurs more or less frequently than expected. All of this results in a matrix of
numbers which could, on its own, take a long time to interpret. They propose a simplified
visual representation of the matrix, using gradients of two colors (one to represent
sequences that occur more frequently than expected and one for those that occur less
frequently) along with plus and minus signs to distinguish the two when values are close
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to zero. They automatically sort the matrices to better display apparent clusters of vowels,
as shown in our reproduction of a similar style in Figure 35.1, where front vowels and back
vowels form clear distinct clusters (indicated by +) with the transparent vowels appearing
with vowels from both clusters.5 Thus, at a glance, one can see whether there appear to be
distinct vowel clusters, how strong that clustering is, and whether those vowel pairs appear
more or less frequently than they would by chance. They also provide interactive options,
allowing a user to hover to get more detailed information from the plot. Mayer (2012)
expands on this and provides additional background. In Mayer & Rohrdantz (2013), they
present PhonMatrix, the online tool that for producing vowel harmony matrices (and more
general matrices of phone-pair associations). A strength of this work is that it does not
require supervision; the values for the matrix are extracted automatically, as is the matrix
ordering.

<INSERT FIGURE 35.1 (MayerStyle.eps) APPROXIMATELY HERE>
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Figure 35.1: Finnish harmony visualization in the style of Mayer et al. (2010). Each square
represents how much more/less frequently the vowel in the column follows the vowel in the
row than would be expected by chance (+/dark indicates greater than expected frequency,
−/light indicates less frequent than expected). Here we use grayscale; the original work
uses two colors for clearer visualization.

Requiring slightly more supervision, Knowles (2012) also presents a visualization
approach. It requires that the user provide vowels along with their features in a grid
(roughly approximating the vowel space), which is then used to produce plots for each
of the vowel classes and neutral vowels (if any). By requiring additional supervision, this
visualization draws attention to articulatory features of interest, as shown in Figure 35.2.
One could imagine combining these to add articulatory features to the Mayer work, or to
automatically compare the clusters found in the Mayer work to articulatory features, along
the lines of the approach in Szabó & Çöltekin (2013).

<INSERT FIGURE 35.2 (FinnishFrontThesis.eps; FinnishBackThesis.eps)
APPROXIMATELY HERE OR BEFORE THIS PARAGRAPH>

5All figures use statistics computed from the finnish-gospels.txt file in Harrison et al. (2004) and are
generated using Matplotlib (Hunter 2007).
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(b) Back class

Figure 35.2: Finnish vowel harmony visualization from Knowles (2012); each subfigure
represents a distribution over vowels as learned by the model, with dark colors
representing higher probabilities. Comparing them, we see two distinct vowel classes:
front and back, with transparent vowels i and e appearing alongside vowels of either class.

35.5 Concluding remarks

Vowel harmony is often a partial phenomenon, affecting only some vowels in some words,
making statistical data-driven approaches a natural fit. Despite many complicating factors,
these approaches have been successfully applied to a variety of tasks, including detection
of vowel harmony from text corpora, the study of child acquisition of harmony patterns,
examinations of models through information theoretic approaches, and visualizations.
Many approaches separate vowels into their own tier and compute statistics from vowels
alone, but approaches that also incorporate consonants show promise for capturing
additional information about vowel harmony patterns. This is a rich and active field of
research, but given limited space, we are unable to discuss the full range of important
corpus-based studies of vowel harmony, including but not limited to Hayes & Londe
(2006), Forró (2013), and Kabak et al. (2008), or models of vowel harmony over time
(Harrison et al. 2002; Chapter 43, this volume). Future directions that may prove fruitful
include increased incorporation of the role of consonants, as well as visualizations that
combine automatic visualization and clustering with external knowledge about articulatory
features.
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